To swim, or not to swim, that is the question: an ancestral state reconstruction based on benthic behaviors across Medusozoa

Kelly E. Walls¹,², and Allen G. Collins²,³

¹University of Arkansas, Fayetteville, ²Smithsonian National Museum of Natural History, ³National Oceanic and Atmospheric Administration NMFS-NSL

Medusozoa is one of the major clades within the phylum Cnidaria. Within Medusozoa, there are four classes: Cubozoa (box jellyfish), Hydrozoa (hydrorids, hydromedusae, and siphonophores), Scyphozoa (so called “true jellyfish,” such as the moon jelly), and Staurozoa (stalked jellyfish).

The phylogeny of Cnidaria strongly suggests that the ancestral lifeform within the phylum is the polyp and that the swimming medusa (jellyfish) stage has evolved one or more times within Medusozoa [1]. A free-swimming medusa could impact the biology of a lineage in several ways:

- The ability to access new food sources in the water column
- Increased dispersal ability
- Increased species range (associated with dispersal)

Medusae are generally viewed as pelagic animals; however, some Medusozoa species prefer the ocean floor [2, 3]. These jellies are said to be benthic/benthopelagic. Not much is known about why they adhere to the bottom of the ocean and the advantages and disadvantages of this behavior have not been studied.

The goal of this research was to perform an ancestral state reconstruction of a lineage in several ways:

- The ability to access new food sources in the water column
- Increased dispersal ability
- Increased species range (associated with dispersal)

Methods

1. Compiled list of genera and species within Medusozoa via World Register of Marine Species (WoRMS)
2. Conducted lit review to determine character states for the following traits:
 - benthic/benthopelagic behavior
 - anchoring mechanism
 - size
3. Code character states based on benthic behavior
 - 0 — no medusa
 - 1 — nonbenthic
 - 2 — benthic
4. Apply data to pre-existing tree [4]
5. Perform an ancestral state reconstruction using R

Results

The phylogeny utilized in this project contained a total of 1102 species, some of which belonged to Anthozoa as opposed to Medusozoa. All Anthozoa members were coded as “0,” meaning they lack a medusa stage. In R, ancestral state reconstructions were run using the All Rates Different (ARD) model, Equal Rates (ER) model, and a Symmetric (SYM) model. The ER model was the best fit because it had the greatest AIC.

The resulting phylogeny (figure 3) suggests that the benthic/benthopelagic behavior has evolved at least 6 times across Medusozoa. However, at least 6 other medusozoan genera, not included in the phylogeny used here, have benthic/benthopelagic medusae.

Discussion

The next step in this project would be to apply the data collected on the 3,945 species and 621 genera to trees with those species and genera as tips and perform an ancestral state reconstruction. This would give us a better estimate on how many times this character trait evolved.

Furthermore, an ancestral state reconstruction using multiple character states should be performed. When collecting data, I made note of the anchoring mechanisms of the benthic/benthopelagic jellies and found that the jellies used adhesive organs/sticky pads on either their tentacles or bell. It would be interesting to see how the location of their attachment impacts the ancestral state reconstruction.

Future Directions

I would like to thank the National Museum of Natural History for hosting me and the National Science Foundation (NSF OCE-1500888) for funding this research experience. I would also like to thank Allen Collins for being a great mentor this summer. I would also like to thank the 12 Aquarium for being a second home and its residents for starring in the photographs used on this poster (all photos taken by Allen Collins and the Aquaroom Crew). Finally, I would like to thank Alia Payne for allowing me to use her illustrations on this poster.

References

Acknowledgements