Henry Miller: 00:02 We don't have any maps, we don't have any good written descriptions, so we really have this lost city that archaeology has to be used to explore.

Narrator: 00:14 In 1634, St. Mary's City was established as the capital of Maryland. A private colony meant to enhance England's empire. St. Mary's was also an experiment in religious freedom and separation of church and state. But a Protestant revolution shook the city's foundation. In 1695, the seat of government was moved to Annapolis, and St. Mary's was abandoned.

Henry Miller: 00:42 By 1750, nothing survived above ground, and it was reverted to farmland, and was used for wheat and tobacco fields for the next 250 years. But that preserved it.

Narrator: 00:55 Then in 1990, archaeologists made an extraordinary discovery. They unearthed three lead coffins beneath the ruins of what was once St. Mary's church. A sign of high status or royalty, only five 17th-century lead coffins have ever been found in North America. In 1992, 150 specialists gathered to uncover history.

Henry Miller: 01:22 We had an entire range of people: engineers, chemists, nuclear plant operators.

Narrator: 01:30 And in the process, the team made history, a new way to study colonial burial sites.

Henry Miller: 01:37 It really was one of the first efforts to pull together such a broad diversity of scientists to focus their skills on solving a particular puzzle.

Tim Riordan: 01:50 We needed a way to look through lead, something that even Superman couldn't do. And we used a high energy radiation source to actually capture a picture of what was inside.

Henry Miller: 02:01 The skull is very dark, which suggests that we have soft tissue preservation which is a really good sign.

Tim Riordan: 02:08 What they're looking for is air that has not been contaminated by chlorofluorocarbons.

Narrator: 02:15 Finally, the coffins were opened, inside were the remains of a man, a woman and a child.
Doug Owsley: 02:22 The ribs are funny here. Do you see this kind of blossoming, this swelling?

Henry Miller: 02:27 If we could determine the season of death, that's something we could then correlate with the historical documents and another piece of evidence to help us identify who these people were.

Narrator: 02:37 The man's coffin contained a mixture of pollen from all seasons, with no particular spike in it.

Henry Miller: 02:43 Which indicated it was a time of the year when plants weren't producing lots of pollen. And when would that be? Wintertime.

Narrator: 02:53 The man and woman had indications of both a European wheat-based diet and an American, corn-based diet. They had been born and raised in Europe and lived for a long time in Maryland. As the forensic file mounted, facts pointed to Philip Calvert, the youngest son of George Calvert, the first Lord Baltimore. Philip was a member of Maryland's founding family.

Henry Miller: 03:17 He became the man who really got Maryland working. He was a source of stability. He made the government work.

Narrator: 03:26 The woman buried alongside him was his wife, Anne Wolseley Calvert. The infant, buried later than the other two, has not been identified, but was likely related to Philip ... A child from a second marriage. Anne was about 60 years old when she died, a long life for a colonist, but not without its problems.

Doug Owsley: 03:49 You'll see that she's lost in life over 20 teeth. We're looking at the effects of her higher status, and the fact that she can afford in her household, for instance, sugar, and that's one of the things that helps just tear up her mouth.

Narrator: 04:04 Eating was so difficult Anne couldn't get enough nutrition. Her bones were fragile. Her right leg badly fractured by a fall.

Doug Owsley: 04:13 She would have had this hip tilted some to try and compensate for the decrease in length of that leg.

Narrator: 04:21 The Calverts were the pinnacle of America's social strata. But even for them life was harsh. Like all who came to the New World, the Calverts left us a legacy. Their stories, vital clues to our complex past, are written in bone.