This issue of Sphecos has depleted our reproduction fund. It is now zero. Thus more donations will be needed to keep this newsletter going. Your past support has been wonderful and very gratifying, and I hope that some of you will be able to help out again so that we can continue. Duplication costs for a normal size issue are roughly $650 (700 copies).

The meetings of the International Society of Hymenopterists will be in Davis, California this summer (Aug. 12-17). Nancy and I hope to see many of you there. It should be a great meeting. My retirement plans were announced in Sphecos 28. I am searching for a replacement editor so that the newsletter does not die. I will bring this up at the meetings in Davis. It is imperative that someone come forward to take over. I now have my own e-mail address: mnhen023@sivm.si.edu. You can reach me here for regular correspondence and change of address notices. Submissions to Sphecos should still be sent to Terry.

RESEARCH NEWS

Dick Bohart (Dept. of Entomology, Univ. California, Davis, CA 95616-8584) reports, “I am working on Bembecinus again. The two papers underway: Entomognathus and Bicyrtes are essentially done.”

Walter Borsato (Museo Civico di Storia Naturale (Sez. di Zoologia), Lung. Porta Vittoria, 9, 37129 Verona, Italy) writes: “At the present I am preparing a revision of some australian Eumenidae of the genera Ischnoceilia Perkins (Eumenidae Discoeliinae), Australodynerus G. G. Soika and Stemdyneriellus G. G. Soika.”

More Donators to the Sphecos Fund:

- Jorge M. Gonzalez
- Tom Mason (Metropolitan Toronto Zoo)
- Joe Asil
- Frank Creutzburg
- Roberto Cambra
- Selki Yamane
- Tadashi Tano
- Hermann Dohllfuss
- Bölivar Garrote
- Barret
- Ken Guichard
- Jung-Tai Chao
- Sutene Nordio
- Shina
- EdBerto
- Giannotti
- Vera Machado
- Elia Cuiuad

Boilvar Garrote Barrett (Sección In- ventoriosados, Mus. Nac. Hist. Nat. Paraguay, Sursenal 19 Campus, Ciudad Univ., Central XI, San Lorenzo, Paraguay) writes, “I am presently working on systematics, biogeography and biology of pollinine wasps in Paraguay. In addition, with Massimo Olmi, I'm preparing a list of Dryinidae of Paraguay, and with the help of Jim Carpenter I'm planning to study the long-overlooked collection of A.W. Bertoni. I am also the curator of Hymenoptera at this museum.”

Arkady Lelej (Inst. Biology and Pedology, Vladivostok-22, 690022, Russia) says, “I am now finishing the third paper in the series on Smicromymmi with a review of six genera (four of them new). I plan to continue my work and study of another difficult group — Orien- tal Trogaspidiini — and I am preparing a key to the genera of this tribe. I will take at least one year or more and I'm trying to receive a grant (you know about the serious problems in Russia and my salary — less than US$ 100 per month, not even enough for food).”

Peter van Ooijen (Prof v. Bermme· lenlaan 61, 3571 El Utrecht, Holland) says, “Not much research news, my Pompilid collection has gone to the ITZ Amsterdam, and after reorganising their Dutch collection and halfway reorganising the Palearctic collection I quit pompilids. My Sphecid collection, including the type specimen of Tachysphex picnic, has joined the collection of the RMNH at Leiden.”

“As for myself I am working on soft- ware, rearing tropical fish, trying to rear aculeats in my garden and wondering...
George Ferguson passed away last year at the age of 79. The following account is from an article that appeared in the September 1986 issue of the college newsletter, "The Oregon Stater," and we have also had access to his obituary published in the June 26, 1986 issue of the newspaper Corvallis Gazette-Times.

George was born in Bolivar, Louisiana, the son of Lloyd and Ethel Collins Ferguson, but he grew up in southern California. He attended the University of California, Berkeley but received his bachelor's and master's degrees from Oregon State University. Ferguson left OSU to continue his studies at Ohio State University, where he earned a doctoral degree in entomology in 1941.

"I decided to specialize in the chemical control of insects," he noted, "because that's where the jobs were." Although he returned to the Oregon State University Agricultural Experiment Station as an assistant entomologist in 1941, he was to leave again in 1943. His major professor had recommended him for a research position on a special project at the University of New Hampshire that was financed by Swiss-owned Geigy Corporation. "Being young and adventurous, I accepted the offer at the University of New Hampshire - a one year postdoctoral appointment - because it involved a 'secret' project and promised to be a challenging project," says Ferguson.

The secret project, which had been smuggled out of Switzerland by Geigy Corporation during World War II, turned out to be DDT. That substance would have enormous impact toward the end of the war, when it was still strictly controlled by the military, and after the war, when it was finally released for general use. During the war, DDT was used successfully for lice control to eliminate typhus epidemics in Southern Europe and to control mosquitoes and malaria in the South Pacific. After the war, it proved its great benefits in agriculture. Ferguson's career and success from that time he moved to the University of New Hampshire were inextricably tied to the development, testing, and production of DDT. He was soon asked to look at the possible uses of DDT in agriculture, and he carried out laboratory and field tests using some of the techniques that he had developed for his doctoral research. At the end of World War II, when many chemical firms went into the production of DDT, Ferguson was recommended to his major professor to go into that area. He set up his own laboratory to develop DDT and other products. He then became chief entomologist and technical director of the Agricultural Chemicals Division, Geigy Chemical Corporation.

"It was my job to lead the company out of the red by developing new products," says Ferguson. "We opened two additional large plants - in Alabama and Louisiana - and produced other chemicals. I had the satisfaction of turning a business around and seeing the company grow from five to 150 million dollars a year."

Ferguson became executive vice-president of Geigy in 1969 and vice-president of CIBA-Geigy in 1970 following the merger of the two firms. He retired from the corporation in 1972.

After retiring from his productive career in the corporate world, George moved back to Corvallis, Oregon in 1973 from Scarsdale, New York, so that he could resume the systematic study of wasps at his old alma mater. He was given a courtesy appointment in the Department of Entomology at Oregon State University where he assisted graduate students. George dedicated his time to studying wasps, reorganizing and classifying a portion of the large insect collection at OSU. He documented his substantial worldwide collection of wasps (more than 60,000 specimens) to OSU.

George first became interested in bees and wasps in the thirties when he took a course in beekeeping at Oregon State University from entomology professor Herman Scullen. While his professional career was in the field of insect control, his keen curiosity about wasps became a life-long avocation that took up most of his spare time. In retirement George pursued studies of sphecid wasps in the genus Cerceris, Conodea, and Philanthus, possibly influenced by his early contact with Herman Scullen, who worked on these wasps for many years. Apparently George hoped to publish revisions of these genera and although his knowledge of them was vast, the revisions unfortunately never saw the light of day. However, between 1981 and 1984 he published nine papers on these genera in which he described new species, key species of certain species groups, clarified the status of many names, established lectotypes, etc.

Ferguson's Wasp papers

The Oregon Stater, September 8, 1994.
lific writer on insect natural history in his native language. He published a series of volumes, 1943-1983, that he called his own "souvenirs entomologiques". He translated the titles as Mem­ oranda of a naturalist and Fifty years observing insect life. The series con­ sisted of vignettes of behavior of a va­ riety of insects but concentrated on sol­ itary wasps and bees. More than half of the 150 titles were never published in entomological journals.

He loved children, and published sev­ eral books just for them. At the elemen­ tary level he designed a kindergarten book on Polistes in 1971, entitled Ashin­ agabachi (long-legged wasps); the text and illustrations were by H. Kubota and N. Tomioka respectively. In 1974 he published a book for older children, Lives of wasps and bees, with photo­ graphs by H. Oda. This book was award­ ed the prestigious Mainichi Publications Culture Award for 1974 from the Maini­ chi Newspapers.

In 1982 he published an elegant book, Japanese Wasp and Bee Life illustrat­ ed Phylogenetically. The text is by Iwa­ ta, and the 84 color plates of numer­ ous, excellent photographs of adults and nests are by his co-authors, K. Kozima, M. Matsuura and K. Goukon. In my letter acknowledging receipt of this handsome book, I congratulated Kunio on the splendid contribution that would enable the layman to appreciate the beauty and complexity of the ani­ mals that we love so much. I commen­ ted on the quality of the photographs that were so sharp, with color so true, and with a wonderful depth of focus. Regrettably, the book is out of print; there are no plans to republish it.

I am grateful to Kazuko Iwata for fur­ nishing the following biographical data for Kunio. He was born 25 May 1906 in Osaka. The family moved in 1910 to a residential suburb, Ikeda. His father died in 1917, leaving his widow to raise Kunio and five sisters in needy circum­ stances. Iwata received his Master's degree from the Agricultural Department of Kyo­ to University in 1931, and remained for several years as an unpaid assistant in the laboratory. Between 1934 and 1941 he taught biology in several high schools; he submitted his D.Sc. thesis to Kyoto University before his departure to Hal­ nan Island, China. This period during which he continued his behavioral studies of wasps and bees, Kunio retired from Kobe University in 1970 because of the age limit.

He married Kazuko Toshima in 1948. They had two sons, Kusuo (1949) and Makio (1953), and there were five grand­ children, a boy and four girls. Kunio died 29 November 1994, and a memorial service was held on 10 De­ cember at Takigawa-Kinen Kaikan of Kobe University.

It seems appropriate to conclude these reminiscences with a copy of Iwata's personally drawn New Year's card for 1988 showing him in a charac­ teristic pose with his family. He was a genial, modest man, a cherished friend, and a superb scientist.
species which, depending on their phylogenetic status, may have a different status. These taxa are named, e.g. "Scoliomyzus", "Sphexcinus" and "Sphenocius". In the traditional classification each named taxon like Sphexcinus has been assigned a categorical rank to indicate its position in the categorical hierarchy. Thus, the term "subfamily" is a category designating the rank of the taxa that is superior to the "family" in the traditional classification.

As De Queiroz & Gauthier (1994: 27) have shown, "the current nomenclatural system is clearly non-evolutionary." The most accepted method that accomplishes this goal is provided by the theory of phylogenetic systematics sensu Mayr (1969). The system "phylogenetic systematics" rather than "classifica tion" to emphasize the methodological differences. For detailed explanations of the theoretical basis of phylogenetic systematics see e.g. Wiley (1981) and Ax (1987). Given that the central principle of phylogenetic systematics is the recognition and characterization of species and monophyletic taxa one may ask whether there is a role of a systematics: as a tool the new methodologies fail. For example, the vast majority agrees that the "best" categorial rank to assign to the taxon name of the species is the "subfamily" rank, that is, "family" is the most accepted method that accomplishes this goal is provided by the theory of phylogenetic systematics sensu Mayr (1969). The system "phylogenetic systematics" rather than "classification" to emphasize the methodological differences. For detailed explanations of the theoretical basis of phylogenetic systematics see e.g. Wiley (1981) and Ax (1987). Given that the central principle of phylogenetic systematics is the recognition and characterization of species and monophyletic taxa one may ask whether there is a role of a systematics: as a tool the new methodologies fail. For example, the vast majority agrees that the "best" categorial rank to assign to the taxon name of the species is the "subfamily" rank, that is, "family" is the most accepted method that accomplishes this goal is provided by the theory of phylogenetic systematics sensu Mayr (1969). The system "phylogenetic systematics" rather than "classification" to emphasize the methodological differences. For detailed explanations of the theoretical basis of phylogenetic systematics see e.g. Wiley (1981) and Ax (1987).
I have created on the PC a program in DBase IV for listing the species of Hymenoptera. The program includes 13 groups of Hymenoptera (Table A) and it is possible to expand it. For each genus there are 4 database files (Table B): the first for species, the second for subspecies, the third for synonymies of species and the fourth for synonymies of subspecies. Every file is used for printouts and searches (Table C). At present the number of species included in the program is 94.

At present the number of species included in the program is: 49.

In the list there may be printouts and searches (Table C). Some of these fields may be lacking. It is a basis for subsequent work.

If there are entomologists interested in having a copy of my program and database, they may send me a diskette.

<table>
<thead>
<tr>
<th>Sphecoidea</th>
<th>6914</th>
<th>895</th>
<th>2932</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim. El.</td>
<td>636</td>
<td>0</td>
<td>143</td>
<td>0</td>
</tr>
<tr>
<td>Dim. El.</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dim. El.</td>
<td>1099256</td>
<td>142305</td>
<td>419276</td>
<td>2930</td>
</tr>
<tr>
<td>M</td>
<td>3736</td>
<td>467</td>
<td>1141</td>
<td>89</td>
</tr>
<tr>
<td>L</td>
<td>1440</td>
<td>268</td>
<td>891</td>
<td>115</td>
</tr>
<tr>
<td>L</td>
<td>3033</td>
<td>229</td>
<td>1551</td>
<td>51</td>
</tr>
<tr>
<td>L</td>
<td>2830</td>
<td>659</td>
<td>1219</td>
<td>106</td>
</tr>
<tr>
<td>E</td>
<td>1285</td>
<td>1285</td>
<td>1285</td>
<td>1285</td>
</tr>
<tr>
<td>F</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>E</td>
<td>690</td>
<td>690</td>
<td>690</td>
<td>690</td>
</tr>
<tr>
<td>D</td>
<td>6342</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>C</td>
<td>1887</td>
<td>36</td>
<td>565</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>1061</td>
<td>305</td>
<td>340</td>
<td>23</td>
</tr>
<tr>
<td>A</td>
<td>330</td>
<td>95</td>
<td>82</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>2245</td>
<td>559</td>
<td>1219</td>
<td>106</td>
</tr>
<tr>
<td>H</td>
<td>2830</td>
<td>659</td>
<td>1219</td>
<td>106</td>
</tr>
<tr>
<td>I</td>
<td>1440</td>
<td>268</td>
<td>891</td>
<td>115</td>
</tr>
<tr>
<td>L</td>
<td>3033</td>
<td>229</td>
<td>1551</td>
<td>51</td>
</tr>
<tr>
<td>M</td>
<td>3736</td>
<td>467</td>
<td>1141</td>
<td>89</td>
</tr>
<tr>
<td>N</td>
<td>2338</td>
<td>249</td>
<td>1271</td>
<td>88</td>
</tr>
<tr>
<td>O</td>
<td>6914</td>
<td>6914</td>
<td>6914</td>
<td>6914</td>
</tr>
</tbody>
</table>

Table A

| Specie Subspecies Sin. specie Sin. subspecie |
|--|---------------------------------|
| NQ in Archivio | 6914 |
| NQ in Elaboratz. | 4 |
| Dim. El Arch. | 1099256 |
| Dim. El Elab. | 636 |

Table B

| Specie Subspecies Sin. specie Sin. subspecie |
|--|---------------------------------|
| NQ in Archivio | 6914 |
| NQ in Elaboratz. | 4 |
| Dim. El Arch. | 1099256 |
| Dim. El Elab. | 636 |

<table>
<thead>
<tr>
<th>Genere in elaborazione: Rhinocyronura</th>
</tr>
</thead>
</table>

(1) Inserire — (M) Modificare — (A) Annullare — (C) Aggiungere — (S) Stampare — (T) Togliere annnullati
(N) Scelta nuovo taxon — (C) Copiare archivio — (E) Ripristinare archivio — (Z) Fine

Table C

- A - Chelodot specie Italian
- B - Elenco genere attuale
- C - Elenco generico Italiano
- D - Elenco specie Collezione
- E - Situazione spec. singola
- F - Elenco per gruppo specie
- G - Ricerca nome nel Genera
- H - Ricerca nome nell'Elenco
- I - Elenco genere nominale
- L - Elenco alfabetico Generi
- M - Elenco nomi per autore
- U - Fine della elaborazione

Operere scelta preg <<

HYMENOPTERA DATABASE

Every species record is composed of:

- Name of the genus
- Valid name of the species
- Author
- Year of publication
- Name of nominate genus
- Corology
- Further notes.

Some of these fields may be lacking. The listed species are from all over the world but with a preference for the Ho- lan Region. In the list there may be some mistakes; it is a basis for subsequent work.

If there are entomologists interested in having a copy of my program and database, they may send me a diskette.
submit for publication. In an attempt to find out whether or not Mr. Pape had observed the spiders inside of the cave, I interviewed Mr. Pape and he did not see any spiders during his visits. I also checked the literature on Pompilus species and found that none of these species have been observed in caves. However, I was able to find a paper by Kurczewski and Evans (1969) that describes the behavior of Pompilus species in caves. According to their observations, the spiders typically enter the cave from the outside and then exit from the same hole. This behavior is consistent with the observations made by Mr. Pape, who reported seeing spiders entering the cave from the outside and then exiting from the same hole.

In Mr. Pape's last letter to me, he described the behavior of the Pompilus species that he observed in the cave. He noted that the spiders enter the cave from the outside and then exit from the same hole. He also reported that the spiders are not seen inside the cave except at the entrance.

I asked Mr. Pape the following questions: (1) Why do the wasps wing-flick only outside, not inside of the cave? (2) Why do they never relinquish their grasp of the prey during transport? (3) How do the wasps navigate within the dark confines of the cave? Do they follow a chemical trail, air movements within the cave or floor landmarks? (4) How do the wasps pre-select their nesting sites? (5) What are the nests (cells) like and how are the immature stages protected from predators and predation? (6) Will females accept artificial nesting tunnels? In the correspondence, Mr. Pape included diagrams of (A) routes of provisioning A. evansi (B) random exit paths of 12 females at cave entrance; and, (C) artificial nesting chamber design (with dimensions).

Literature Cited

July 95
seems much less likely in view of the persistent failure to find either genitalic or other structural difference.

We thank Colin Vardy for advice on Pepsis taxonomy.

Reference

Apparent Bird Predation on Trypoxylon nest

by

Christopher K. Starr

St Augustine, Trinidad

The following observations are from Abraham "Bram" Willink's argentine country house at Tafi del Valle, "Usumán" (1965), mid-December 1993. On the outside walls of the house and out-building I found numerous disused mud nests of an unidentified Trypoxylon sp., each with up to about 30 cells. The cells lay parallel to the wall, forming a narrow comb up to three cells broad, i.e. no cell was separated from the wall by more than two cells. I saw no adult wasps or nesting activity at that time, early summer. A nest of apparently the same species in the Instituto Miguel Lillo collection is associated with wasps identified as T. faberius. A quick look at it suggests that it is indeed a member of the fabricator-group, but the wasp seems too small and the nest unlike that of T. fabricator.

A peculiar feature of most nests was considerable, fairly systematic damage, such that cells were opened along most of their length, exposing the cells internally. It did not have the appearance of hourglass damage from weather or house-clearing. Suspecting that birds had opened the cells in search of wasp larvae, I looked for nests in relatively undamaged nests of an unidentified Trypoxylon sp., each with up to about 30 cells. I saw no adult wasps or nesting activity at that time, early summer. A nest of apparently the same species in the Instituto Miguel Lillo collection is associated with wasps identified as T. faberius. A quick look at it suggests that it is indeed a member of the fabricator-group, but the wasp seems too small and the nest unlike that of T. fabricator.

A peculiar feature of most nests was considerable, fairly systematic damage, such that cells were opened along most of their length, exposing the cells internally. It did not have the appearance of hourglass damage from weather or house-clearing. Suspecting that birds had opened the cells in search of wasp larvae, I looked for nests in relatively undamaged nests of an unidentified Trypoxylon sp., each with up to about 30 cells. I saw no adult wasps or nesting activity at that time, early summer. A nest of apparently the same species in the Instituto Miguel Lillo collection is associated with wasps identified as T. faberius. A quick look at it suggests that it is indeed a member of the fabricator-group, but the wasp seems too small and the nest unlike that of T. fabricator.

A peculiar feature of most nests was considerable, fairly systematic damage, such that cells were opened along most of their length, exposing the cells internally. It did not have the appearance of hourglass damage from weather or house-clearing. Suspecting that birds had opened the cells in search of wasp larvae, I looked for nests in relatively undamaged nests of an unidentified Trypoxylon sp., each with up to about 30 cells. I saw no adult wasps or nesting activity at that time, early summer. A nest of apparently the same species in the Instituto Miguel Lillo collection is associated with wasps identified as T. faberius. A quick look at it suggests that it is indeed a member of the fabricator-group, but the wasp seems too small and the nest unlike that of T. fabricator.

A peculiar feature of most nests was considerable, fairly systematic damage, such that cells were opened along most of their length, exposing the cells internally. It did not have the appearance of hourglass damage from weather or house-clearing. Suspecting that birds had opened the cells in search of wasp larvae, I looked for nests in relatively undamaged nests of an unidentified Trypoxylon sp., each with up to about 30 cells. I saw no adult wasps or nesting activity at that time, early summer. A nest of apparently the same species in the Instituto Miguel Lillo collection is associated with wasps identified as T. faberius. A quick look at it suggests that it is indeed a member of the fabricator-group, but the wasp seems too small and the nest unlike that of T. fabricator.
Astata dominica, Aphllanthops (Cypeadon) phoenix, Ammoplanus (Paremmoplanus) lenape
Ammoplanus (Paremmoplanus) apache, Ammoplanus (Ammoplanus) vanyumi, Ammoplanus (Ammoplanus) sechi, Ammoplanus (Ammoplanus) quabajai, Ammoplanus (Ammoplanus) loti, Ammoplanops 'Viereck/', Ammoplanus (Ammoplanus) foxi, Ammoplanops cresson/, Ammoplanops ashmeadl, (Hopllsoides) alaya.

E. (Hypocrabro) texanus ais, E. (Hypocrabro) alpheus, Ectemnius (Hypocrabro) alphas, Ectemnius (Hypocrabro) chemehuevi, Ectemnius (Biepharipus) callani, Ectemnius (Biepharipus) yosemite, Dihylobolus miakha St. Pk., Fla., Feb.

The species of Sphecidae in which Pate stated that the type was deposited in the Academy collection, but have not been found there, are as fol­

1943 [H).

Since this information is identical with

Pate stated that the type was depos­

1947 [H).

Ammoplanus (Ammoplanus) yavapai, Loyoedia 6:301, 1944 [H).

Crossocerus (Blepharipus) callani, Notulae Nat. 91:15, 1941 [H].

Crossocerus (Blepharipus) stictochilos, Loyoedia 6:304, 1944 [H].

Crossocerus (Yuchilla) phaseochilos, Loyoedia 6:276, 1944 [H].

Belomirius apache, Trans. Amer. Ent. Soc. 66:93, 1940 [H].

Belomirius ceylonicus, Trans. Amer. Ent. Soc. 66:72, 1940 [H, A].

Belomirius cucumongi, Trans. Amer. Ent. Soc. 66:76, 1940 [H, A].

Belomirius forbesi parvu, Trans. Amer. Ent. Soc. 66:27, 1940 [H].

Belomirius istem, Trans. Amer. Ent. Soc. 66:81, 1940 [H].

Belomirius mexicanus, Trans. Amer. Ent. Soc. 66:87, 1940 [H].

Belomirius pachappi, Trans. Amer. Ent. Soc. 66:73, 1940 [H].

Belomirius sechi, Trans. Amer. Ent. Soc. 66:69, 1940 [H].

Belomirius serrano mono, Trans. Amer. Ent. Soc. 66:46, 1940 [H].

Belomirius timbarki, Trans. Amer. Ent. Soc. 66:84, 1940 [H].

Belomirius furius, Trans. Amer. Ent. Soc. 66:83, 1940 [H].

Bicyrtes orbilis, Rev. de Ent. 6:220, 1963 [H, A].

Crossocerus (Blepharipus) callani, Notulae Nat. 91:15, 1941 [H].

Crossocerus (Blepharipus) stictochilos, Loyoedia 6:304, 1944 [H].

Crossocerus (Yuchilla) phaseochilos, Loyoedia 6:276, 1944 [H].

Diploplectron kantsi, Ent. News 52:6, 1947 [H].

Ectemnius (Cypeadon) yeominate, Notulae Nat. 171:5, 1946 [H].

Ectemnius (Hypocrabro) dixutara, Trans. Amer. Ent. Soc. 73:17, 1947 [H].

Ectemnius (Hypocrabro) 10-maculatus tequesit, Notulae Nat. 171:5, 1946 [H].

Ectemnius (Hypocrabro) salei, Trans. Amer. Ent. Soc. 73:22, 1947 [H].

Enoplolindenius (Enoplolindenius) chibcha, Rev. de Ent. 13:416, 1942 [H].

Enoplolindenius (Enoplolindenius) pana, Rev. de Ent. 13:417, 1942 [H].

Enoplolindenius (taxiadena) georgia, Rev. de Ent. 13:393, 1942 [H].

Enoplolindenius (taxiadena) jarage, Rev. de Ent. 13:401, 1942 [H].

Enoplolindenius (taxiadena) corotina, Rev. de Ent. 13:397, 1942 [H].

Enoplolindenius (taxiadena) ponca, Rev. de Ent. 13:365, 1942 [H].

Euplius (Euplius) calverti, Notulae Nat. 190:1, 1947 [H].

Euplius (Euplius) displura, Notulae Nat. 190:4, 1947 [H].

Euplius (Euplius) fissipalpis, Notulae Nat. 190:5, 1947 [H].

Fusia eterna, Rev. de Ent. 13:380, 1942 [H].

Harpactostigmia (Arcoscelis) rutulum, Trans. Amer. Ent. Soc. 64:59, 1938 [H].

Hypolisidii umboniadis, Notulae Nat. 91:1, 1941 [H].

Losada paria, Notulae Nat. 55:4, 1940 [H].

Metanexas (Hueschua) alviceps, Trans. Amer. Ent. Soc. 64:186, 1938 [H].

Metanexas (Metanexas) coahuale, Trans. Amer. Ent. Soc. 64:183, 1938 [H].

Metanexas (Metanexas) yavapai, Trans. Amer. Ent. Soc. 64:178, 1938 [H].

Moniaecera (Moniaicerca) evansi, Ent. News 57:239, 1947 [H].

Moniaicerca (Moniaicerca) pituit, Notulae Nat. 185:10, 1947 [H].

Motes (Notogoniopsis) mascalco, Canad. Ent. 75:200, 1943 [H].

Motes (Notogoniopsis) muspa, Canad. Ent. 75:201, 1943 [H].

Mites (Notogoniopsis) mascalco, Canad. Ent. 75:200, 1943 [H].

Mites (Notogoniopsis) mascalco, Canad. Ent. 75:201, 1943 [H].

Nysson (Nysson) chumash, Notulae Nat. 62:3, 1940 [H, A].

Nysson (Nysson) coyotero, Notulae Nat. 63:3, 1940 [H, A].

Nysson (Nysson) paritama, Trans. Amer. Ent. Soc. 64:139, 1938 [H].

Ochohdromia jamace, Canad. Nut. 58:15, 1947 [H].

tions are very difficult, particularly in the Dryinidae, and that makes are far more conservative structurally. This fact prob-
ably makes males more valuable for genetic analyses than females. Howev-
er, the author bases his phylogenetic statements on females. Females are so
highly specialized for parasitic behavior that deriving a phylogeny for the Dryni-
dae based on female characteristics may show little useful resolution. Additional-
ly, it makes no sense to do a phylo-
genetic analysis of species found in such a small, biogeographically unmarka-
ble region. The species found here un-
doubtedly have sister species in other, not necessarily adjacent regions, not jus-

t in the area of Denmark and Fen-
noscanda. The cladogram on page 32 is a classic of its kind.

However, overall this book is a thor-
ough, and valuable work. It is clearly
and concisely written, and contains one of the most detailed treatments of the
biology and morphology of these fami-
lies ever published. It certainly contains
the most beautiful illustrations of these
wasps i've ever seen.

Lynn S. Kimsey
Department of Entomology
University of California
Davis, CA 95616

ALLOTYPES

For some years now, I have been
reviewing as a service editor. This has
exposed me to the wrappings of authors
from all over the world. I have been
amazed by the fact that some taxono-
mists have no real appreciation of the
term allotype. For example, some writ-
ers will describe and designate the allo-
type of a previously described species!
Such action is simply improper. Why?

The explanation is simple. When an au-
thor describes a new species, a toho-
type is designated, and any other type
specimens cited in the original descrip-
tion are paratypes. Some authors des-
ignate one paratype as an "allotype" to
indicate that it is the opposite sex of the
holotype. But that does not change the
fact that it is still a paratype. If an au-
thor describes a new species from only
one sex, then anyone that subsequent-
ly finds the previously unknown opo-
site sex can describe it. But it is im-
proper to identify one specimen as the
"allotype". Type material (holotype and
paratypes (and allotype) can only be
designated in the original description.
Subsequent descriptions of an unknown
sex are simply that.

DERIVATION OF
SCIENTIFIC NAMES

Providing the derivation of the names of
new species is something that au-
authors occasionally omit in their original
descriptions. The consequences of this
can sometimes be disconcerting, and
in the case of patronymics, downright
dishonorable. Occasionally a species
name is published with a spelling differ-
ent from that intended by the author.
This happens because an author may
miss a typesetting error during proof-
reading. Unfortunately, I did not
see the error during proof reading.
Unfortunately, I did not
give the derivation of the name, so
there was no evidence in the original
description itself that would permit me
to emend the name units, my intend-
ed spelling. Thus the species will forev-
er be units.

The North American hymenopterist,
Arnold Menke Jr., although the specimen on which
the description was based was collect-
ed by him and apparently "ognelli"

Abe's creation of a sports drink con-
taining some of the compounds found
in the saliva of homat larvae. Abe, of
the Institute of Physical and Clinical
Research in Japan, figured that this
saliva must be responsible for the amaz-
ing power that enables adult hornets to
beat their wings more than a thousand
times a minute, and to fly over 100km a
day. His analysis of the saliva showed
the compounds found

Robert Edwards from an article in

A recent study of hornets in Japan has shown that the saliva of adult hornets con-
tains some compounds that enable them to fly very fast. This saliva contains some compounds that
are similar to those found in the saliva of homat larvae. Abe, of the Institute of Physical and Clinical
Research in Japan, figured that this saliva must be responsible for the amaz-
ing power that enables adult hornets to
beat their wings more than a thousand
times a minute, and to fly over 100 km a
day. His analysis of the saliva showed
the compounds found

Abe's concoction has been tried by
marathon runners, rugby and ice hock-
key players, and all have reported in-
proved results if they drink the "polu-
on" before play begins. The actual contents
of the drink are not reported!
IVth INTERNATIONAL COLLOQUIUM ON SOCIAL INSECTS

First Announcement

The Russian Language Section of the International Union for the Study of Social Insects announces its IVth International Colloquium which will be held in St. Petersburg (Russia) from Friday 16 till Thursday 22 August 1996. The Colloquium will cover all aspects of behaviour, ecology and physiology of social and presocial arthropods and will be international with a broad participation of colleagues from other IUSSI sections and other scientists from abroad.

The official languages of the Colloquium will be English and Russian. The scientific meetings are scheduled for four full days, the other two days being devoted to excursions all over St. Petersburg, its beautiful palaces, museums and environs. An additional excursion tour could be organized for two days after the Colloquium closure.

Papers presented to Colloquium (up to 25 typewritten pages in English or in Russian) will be published in the IV volume of the Proceedings of the Colloquia on Social Insects. The authors will receive 50 reprints of each article without charge.

We would be happy to see all our foreign colleagues among the participants of the IVth International Colloquium on Social Insects in St. Petersburg.

If you intend to participate, please, send us a short application (see below). We will send out the second announcement at the beginning of 1996.

Communication:

Dr. Vladilen E. Kipyatkov, President of the IUSSI Russian Language Section, Department of Entomology, Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya naberezhnaya, St. Petersburg 199034, RUSSIA
Tel.: (+7) 812 218-96-79; Fax: (+7) 812 218-08-52, 218-13-46; E-mail: vke@socium.spb.su

Name ...
Address ...

Fax: ______________________________ E-mail: ______________________________
I wish to submit: a paper a poster
Preliminary title of a talk/poster: __

get here

Name ...
Address ...

Fax: ______________________________ E-mail: ______________________________
I wish to submit: a paper a poster
Preliminary title of a talk/poster: __

