Background Information

This study examined a modern day gypsum depositional system in the Salar de Llamara, a desiccated saline lake in the northern part of Chile’s Atacama Desert. The Salar contains a number of small lagoons, called Puquios, within which we can interpret abiotic vs. biologically-mediated mineralization. Morphologically diverse mineral deposits similar to stromatolites are found within the Puquios system and microbial mats are abundant throughout. The presence of these microbial communities and biologically influenced mineral formations within the Puquios has made the Chilean government very keen to preserve the biodiversity of the Salar de Llamara.

The goal of this study was to identify and understand the biomarkers of any such biologically-mediated deposition. For instance, understanding how these interactions work and if these biogemstones can be left behind in the rock record contributes to both our understanding of the development of life on this planet and to our continuing searches for evidence of extraterrestrial life.

Key Questions

- What minerals do we see forming in the Puquios?
- What factors impact the formation of minerals in the Puquios depositional system?

Location of the Puquios

(a) regional context and location of the Puquios within northern Chile
(b) enlarged view of the red square in (a) showing the location of the Puquios within the Salar de Llamara
(c) red box highlighting Puqio 1 and Puqio 2 in (b), labeled dots indicate locations of collected samples.

Sample Collection

Microbial mat samples were collected from the Puquios in November 2017, September 2018, and March 2019 and preserved in either formalin or glutardialdehyde.

Scanning Electron Microscope (SEM) analysis

Samples were treated with increasing concentrations of ethanol followed by propylene oxide to preserve microbial material in context with minerals. Samples were then impregnated with epoxy in a controlled vacuum environment (8). Finshed samples were cut and polished for imaging. SEM imaging was done using a ThermoFisher Scientific Apreo Field Emission SEM (FESEM) fitted with a compound electrostatic and immersion final lens, low vacuum capability and Energy Dispersive X-Ray Spectrometer (EDS) with a 60 mm Silicon Drift Detector (SDD) in the the Scanning Electron Microscopy Laboratory, NMNH.

X-Ray Diffraction (XRD) analysis

Grains subsampled from preserved material were dried and ground to a fine powder (f). XRD was performed using a Rigaku D/MAX Rapid micro diffractometer with an imaging plate detector to identify mineral phases from powdered material. Samples were exposed to an X-ray beam. XRD patterns were identified through comparison to previously published, and theoretical mineral d spacings using the Jade 9 software application.

Results

Field Photos

Hand Samples

XRD Analyses

Conclusions

- Numerous types of minerals exhibiting varying morphologies are found in close proximity to one another within Puqio 1 and 2.
- Environmental parameters impact microbial community composition and subsequent mineral deposition.
- The presence of Magnesium Silicate, Calcium Carbonate, and Manganese-Oxide are indicative of biological influence in this system.

Acknowledgements

This summer research experience would not have been possible without the generous support of the NSF and the Smithsonian Institution, so thanks to them for the unforgetable experience and for everything else that they do for the sciences. Thanks to Gene Hunt, and Virginia Power, patrons sent by the NHM intern, and to the rest of the team who helped make NHM summer 2019 happen. My eternal gratitude goes out to the Department of Mineral Sciences, NMNH, all of whom are rock stars in my eyes, but especially to my mentors Erica Suosaari and Ioan Lascu who somehow managed to put up with my crap almost every day of these ten weeks, to miracle workers Tim Gooding and Rob Wardell, and to department chair Jeff Paul for some invaluable insights down the rabbit hole of Manganese Oxides. Additional thanks to tech guru Scott Whitaker down the Scanning Electron Microscopy Laboratory, NMNH. Last but never least, I would like to thank my cat, Pauline.