Morphological and ecological diversity in mainland *Draconura* clade anoles

Jonathan M. Huie1,2, Ivan Prates2, Rayna C. Bell2, Kevin de Queiroz2

School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA1; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C.2

Anoles are a diverse group of lizards that inhabit Central and South America as well as the Caribbean Islands. The Caribbean anoles are a well known example of repeated convergent evolution and can be categorized into six distinct ecomorphs. To map out patterns of morphological evolution in mainland anoles, a phylogenetically informed principal component analysis was performed.

OBJECTIVES

1. To compare the morphology of mainland *Draconura* clade anoles with Caribbean species.

2. To determine whether mainland anoles can be sorted into the main ecomorph classes or if they form their own morphological groups.

3. To examine patterns of morphological evolution in mainland anoles.

METHODS

We measured 15 morphological traits for 79 mainland *Draconura* species and 31 Caribbean species (1-5 specimens per species). The data was transformed and then size corrected with a linear regression model. The residuals of the regression were averaged per species then used as the data points for analysis.

To contrast the morphology of the mainland and Caribbean anoles, a phylogenetically informed principal component analysis was performed.

To group species based on morphology (morphotypes), the pc scores were used in a hierarchical clustering method (UPGMA).

To determine the distinguishing traits for each morphotype, a discriminant function analysis was conducted.

To map out patterns of morphotype evolutionary history, an ancestral state reconstruction model was used.

CONCLUSION

1. Some mainland *Draconura* species occupy a similar morphological space as some of the Caribbean ecomorphs, while others do not.

2. Many mainland and Caribbean species were placed within the same morphotype, while some morphotypes were exclusively comprised of either mainland or Caribbean species.

3. Each morphotype, with the exception of MT 7, has evolved several times, which provides evidence for convergence on the mainland.

4. The inference of mainland-only morphotypes suggests unrecognized ecomorphs that are exclusive to Central and South America, but future studies are required to determine whether members of these morphotypes share common ecologies.

Acknowledgements

We would like to thank Addison Wynn and Kenneth Tighe for help with accessing USNM specimens. We also thank Kevin Mulder and Anna Penna for providing statistical advice and their valuable feedback along with Ryan Schott, Kyle O’Connell, and Maya Woolfak. We would also like to thank Liz Cotrell, Gene Hunt, and Virginia Powers and the NHRE program for providing the accommodations to conduct this study. Funding was provided by the NSF award OCE-1560088 (JMH).

References

Figure 1. A diagram of an anole (ventral view) showing the 15 measured traits known to have ecological significance.

Figure 2. A phylogenetically informed principal component plot displaying the morphological diversity of the *Draconura* clade anole species and 31 Caribbean species. Polygons were drawn to better visualize the morphological space occupied by each Caribbean ecomorph.

Figure 3. A dendogram showing the hierarchial relationship between species as determined by the UPGMA with the Caribbean ecomorphs colored for reference. Colored bars also show how the clusters were used to form morphotypes.

Figure 4. Two discriminant function analysis plots that emphasize the morphological traits that can be used to differentiate each of the morphotypes. Polygons were drawn to better visualize the morphological space occupied by each morphotype, while the ellipses indicate the mainland-only morphotypes.

Figure 5. The results of an ancestral state reconstruction analysis using a “equal rates” model plotted on a phylogeny showing the probability mixing of the morphotypes. Phylogenetic tree modified from Poe et al. (2017).