Phylogeographic analysis of mitogenomes of five tropical Asian birds

Elizabeth Reardon1,3, Haw Chuan Lim1, Elhsan Kayal2, Michael Braun1

1 Smithsonian Institution National Museum of Natural History, Department of Vertebrate Zoology; 2 Smithsonian Institution National Museum of Natural History, Department of Invertebrate Zoology; 3 High Point University

Objective

Use mitochondrial genome data to investigate the population divergence patterns of five species of tropical Asian birds.

Introduction

Phylogeography is a subspeciality of evolutionary biology that takes into account how space and time affect the population divergence patterns of a species (Hewitt, 2001). We used a phylogeographic approach to study five tropical rainforest bird species from Asia: Arachnothera longirostra, Irena puella, Niltava grandis, Pycnonotus sinensis, and Vachellia signipica. Individual members of these species can be found in museum collections throughout the world, with collection dates going as far back as the 1800s. The mtDNA of specimens were used to analyze the intra-species phylogenetic relationships, with a further evaluation of the geographic localities and the organization of the phylogenetic trees.

Methods

- Acquire samples from globally distributed museums, including NMNH; extract mtDNA from the toe pads of birds, and sequence using a sequence capture approach; assemble a reference genome for each species
- Map reads for each sample to reference, call consensus based on samples (Genericus)
- Calculate parsimony informative sites (MEGA)
- Create multiple sequence alignment from consensus sequences (MAFFT)
- Manually edit alignments (Genericus)
- Partition alignments (PartitionFinder)
- Create phylogenetic trees with branch support (RAxML, MrBayes)
- Plot samples’ collection sites (Google Earth)

Figure: From left to right: mitochondrial genome organization for bird species A. longirostra (one control region) and I. puella (two control regions), the remaining three organisms have similar mitogenomes to A. longirostra. The first branch of the phylogenetic tree with scale bar indicates divergence length, colored leaves correspond to adjacent map with collection site.

Discussion

Our comparative phylogeographic analysis reveals commonalities and discrepancies among the five study species. For the two species with Western Ghats samples (A. longirostra and I. puella), samples from this region are sister to and highly divergent from birds from Indochina (regions 3, 5, 8, 9, and 10), suggesting that separation of populations has occurred over a long period of time. The peripheral islands of Palawan and Java often hold divergent populations (for A. longirostra and I. puella, and strong support for P. atrocal), Borneo also often contains populations that are distinct from those of the Malay Peninsula, suggesting that even though land bridges were routinely formed between these two landmasses in the past, they did not necessarily facilitate extensive gene flow. The Indochina-Brunei region provides a diverse display of phylogenetic patterns, as it contains one to three divergent lineages per species, with lineages segregating in an East-West manner.

Difficulties in utilizing ancient mtDNA include increased degradation with time (average of 23% of samples were eliminated from analysis due to missing data), as well as the provision of solely matrilineal genetic information; it would be interesting to see if nuclear DNA yields comparable relationships. Further expansions upon the project may include comparative analysis of age and sample quality, potential biological factors in relation to distribution, and exploration of non-synonymous changes in protein coding genes (Table 1).

Acknowledgments

We would like to thank Dr. Elizabeth Cottrell, Dr. Gene Hunt, and Ms. Virginia Power for the direction and administration of the NHRE Program. We would also like to recognize the NSF for NHRE funding at REU Site, EAR-1560088.

References

Katoh, K. and Standley, D. M. 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements for faster and high-quality alignment.

Table 1. Proportion of second alignments for A. longirostra (A), I. puella (I), A. longirostra (A), N. grandis (N), A. longirostra (A), and V. signipica (V).