Entrainment and Runout of Martian Pyroclastic Density Currents

Darien Florez1,², Benjamin Andrews², and Mary Benage²
1Jackson School of Geosciences, The University of Texas, Austin, TX
2Department of Mineral Sciences, Smithsonian National Museum of Natural History, Washington, DC

Motivation:
The large Martian deposit known as the Medusae Fossae Formation (MFF) was likely deposited through volcanic processes, i.e. deposition through pyroclastic fall or pyroclastic density currents (PDC). This is based largely on the analysis of satellite images of the formation. Little has been done to test the feasibility of PDCs as the depositional mechanism of the MFF, or the effects of atmospheric pressure on PDC runout. One of the largest questions is if PDCs on Mars can travel far enough (>100s km) to make such a deposit from a small number of eruptive sources, or if, instead, PDCs travel short distances (<50 km) requiring many eruptive sources.

Background:
PDCs are dense mixtures of rock and gas generated during explosive eruptions. They travel laterally across the landscape until they become less dense than the atmosphere. Their density decreases as they mix (or entrain) air through their surface area. The velocity of air being mixed into the current divided by the mean velocity of the current is called the entrainment rate, c.

Pressure:

Due to the low pressure of the atmosphere, PDCs are more likely to occur on Mars.

For a given mass flux, Martian eruptions yield plumes with larger volume fluxes that entrain air less efficiently than their Earth counterparts, resulting in column collapse and PDC generation. Those high volume flux PDCs should travel farther on Mars than on Earth.

3D Experiments

- Quantitative 3D renderings of currents accurately give us surface area and bulk volume measurements.
- Entrainment volume can be calculated and used to find entrainment velocity:

\[\text{Volume} = V \times \text{w} \times \text{h} \]

- Our numerical model treats currents as a sequence of axisymmetric cylinders growing over time.
- Various parameters such as eruption rate can be controlled to produce a data series that includes runout distance, density, and temperature.
- The model predicts when currents will lift off.

Numerical Model

- Our numerical model treats currents as a sequence of axisymmetric cylinders growing over time.
- Various parameters such as eruption rate can be controlled to produce a data series that includes runout distance, density, and temperature.
- The model predicts when currents will lift off.

Discussion:

Validation of numerical model
- Numerical model recovers experiment runout to within ~10%.
- This difference likely results from axisymmetric dispersal (rather than directed), and because the model does not account for the deposition of pyroclasts.
- Variation in average entrainment rate strongly affects runout distance, but unsteadiness in entrainment rate does not. This relationship is demonstrated by experiments and numerical results.
- We assume entrainment of 0.2 for numerical simulations of Martian eruptions. This value agrees with that of Andrews (2014), but is higher than most previous estimates of entrainment, and has the effect of reducing runout.
- The model assumes no variation in entrainment with volume flux; this is supported by the experiments.

Entrainment varies with temperature, but not eruption rate
- Experiments show entrainment ranges from ~0.1-0.2 for ambient temperature currents to as high as 0.6 for heated currents.

Currents on Mars can travel up to 5.8 times farther than those on Earth
- For eruptions with equivalent parameters, runout distance increases as atmospheric pressure decreases.

PDCs provide a reasonable mechanism for the Medusae Fossae Formation
- Explosive eruptions are increasingly likely at lower pressure (Wilson and Head, 1994).
- As pressure decreases, PDC generation becomes favored.
- PDCs can travel up to 100 km for “large” eruptions and >200 km for supereruptions.
- Our results do not say from where the MFF erupted, but they do suggest the potential extent of individual deposits.
- Future mapping efforts focused on describing the thickness of individual units within the MFF and mapping the extent of those units will provide constraints on atmospheric and eruptive conditions that led to the MFF.

References & Acknowledgements:

Special thanks to my mentor Benjamin Andrews for being an amazing role model, and offering me so much guidance. Thanks to the NHRI program, as well as its directors Virginia Power, Gene Hunt, and Liz Cotrell. I’d also like to thank all of the researchers, curators, and all of the staff across all of the different departments who so generously shared their amazing work at the NMNH with us every Friday. Thanks to Dan Cole reprojecting the geologic map. This experience could not have been possible without the generosity of the Smithsonian Institution, as well as the funding by the National Science Foundation.

References: