

Fig. 1: False color image of Mercury. Photo credit: NASA

Mineral Associations in Enstatite Chondrites: A Window into Mercury's Present

Sierra V. Kaufman^{1,2}, Catherine M. Corrigan¹, Timothy J. McCoy¹, Emma S. Bullock³ ¹Smithsonian National Museum of Natural History, Mineral Sciences Department ²Fredonia State University of New York, Geosciences Department ³Carnegie Institution of Washington

Introduction and Background

Enstatite chondrite meteorites share many elemental characteristics with the planet Mercury as discovered by the MESSENGER mission. Both E chondrites and Mercury's surface contain volatile elements such as sodium, potassium, sulfur and chlorine and have high magnesium contents^[1]. Due to technological and monetary constraints, obtaining samples directly from Mercury is not feasible. However, because of their similarities, enstatite chondrites are a viable proxy for determining the mineral phases that may host the elements on Mercury^[2].

Djerfisherite, a potassium sulfide with the formula^[3] K_6 (Fe, Cu, Ni)₂₅ S_{26} Cl, is thought to be the phase which houses the chlorine content on Mercury and is hypothesized to be formed through the sulfidization of roedderite^[4], a potassium silicate with the formula^[3] (Na, K)₂(Mg, Fe)₂[(Mg, Fe)₃Si₁₂O₃₀]. Both minerals are thought to form in highly reducing environments such as those thought to be present during the formation of E chondrites and Mercury. A detailed study to prove their common occurrence and examine their relationship needed to be undertaken before asserting the presence of roedderite on Mercury.

Fig. 2: Sierra Kaufman and Cari Corrigan working on the SEM. This is how the majority of the data was collected. Photo credit: Jim Di Loreto.