Climate change and anthropogenic activity have substantially altered habitats and ecosystems all over the world. Habitat loss, invasive species, and overexploitation are threatening biodiversity. To protect their historical biodiversity and species richness, many countries, such as Kenya, have set aside National Parks. Here we compare mammal communities sampled by museum expeditions in the early 1900s to modern surveys in the same areas to test how these parks are preserving the biological integrity and diversity of historical ecosystems.

Questions:
1. Was historical sampling of Kenyan mammal faunas adequate for comparative and analytical purposes?
2. Have mammal communities in Kenya changed with respect to:
 a. Species richness?
 b. Species composition?
 c. Body size distributions?
 d. Trophic structure?

Methods
We examined mammal assemblages at six sites in Kenya (see Map). These sites comprise several different habitat types including high elevation rainforest (Kakamega), grassland (Maasai Mara), savanna (Athi Plains, Samburu), wetland (Naivasha), and woodland (Tsavo). The sites were compared at 1896-1913 and post-1975. We obtained historical data from faunal lists and specimen counts from the Smithsonian African Expedition of 1909 and from the Field Museum of Natural History. We compiled contemporary (post 1975) species lists for each site from field surveys and various literature (e.g., Williams, 1976) and Internet sources. Taxonomy was updated and standardized according to Wilson and Reeder (2005). Body sizes and trophic information were taken from an updated version of Smith et al. (2003).

Conclusions
• Sampling of historical sites was adequate for analysis (Fig. 1).
• Species richness increased (Fig. 2).
• Body size distributions became more similar across sites (Fig. 4).
• Trophic distributions became more similar across sites (Fig. 5).
• Different sampling methods can lead to inaccurate interpretation of changes in diversity.

Acknowledgments
The authors thank Craig Ludwig and Linda Gordon for their help accessing documents and records of the Smithsonian African Expedition. We also thank Bill Stanley and Ken Kerley for help accessing collections at the Field Museum of Natural History. We thank Tyler Faith and Andrew Macdonald for substantive feedback on this manuscript. Finally, we thank the Evolution of Terrestrial Ecosystems program at the Smithsonian for funding this project.

Fig. 1. Rarefaction analysis and Chao-1 calculates expected species richness based on sampling. Table shows observed richness and Chao-1.

Fig. 2. Historical and modern site faunas. Historic faunas and modern site faunas. Historic faunas are similar to each other and modern site faunas. Historic faunas show more inter-site variation than the same sites ~100 years later. Post-1975 faunal data from Naivasha, the Athi-Kaputei Plains, and Maasai-Mara approach similar trophic structures, as do Kakamega and Tsavo.

Fig. 3. Beta diversity within each time period using the Sorensen index on all pairs of sites. Larger circles = lower beta diversity.

Fig. 4. Moments of the historical and community body size distributions. Skewness: Positive values indicate right skew (more small mammals); Negative values indicate left skew (more large mammals). Kurtosis: Values around zero indicate a simple normal distribution, from 0 to -1 indicates uniform distribution, < -1 indicates a bimodal distribution.

Fig. 5. Trophic distributions of historic and modern site faunas. Historic faunas are similar to each other across sites. Post-1975 faunal data shows overall mammal diversity in Kenya.

Table: Richness and skewedness across all sites in the past century

Bibliography