INTRODUCTION

- Vitaceae (the grape family) consist of 14 genera and about 900 species primarily distributed in tropical regions in Asia, Africa, Australia, the Neotropics, and the Pacific islands.
- The family is an economically important, containing several agronomic crop species (e.g. *Vitis vinifera* L.) and ornamentals (e.g. *Parthenocissus quinquefolia* L.).
- Recent molecular analysis support the Vitaceae, along with the closely related Leeaceae as sister to all other rosids (Jansen et al., 2006).
- Vitaceae are typically woody or herbaceous climbing vines and occasionally succulent trees.
- Morphological classifications within the Vitaceae has been problematic, with the number of recognized genera increasing from two at the time of Linnæus’ recognition, to ten based on morphological characters. Current molecular and morphological data suggests at least 14 genera.
- A recent molecular phylogeny of the Vitaceae provide support for a *Vitis-Ampelocissus* clade consisting of the genera *Vitis*, *Ampelocissus*, *Nothocissus*, and *Periphranthes* (Ren et al., 2013).
- The *Vitis-Ampelocissus* clade possesses most of the Northern Hemisphere Vitaceae species with some members disjunct between Asia and North America (Soejima et al., 2006).
- The *Vitis-Ampelocissus* clade remains largely under-sampled and unresolved in the large family-wide phylogeny.

PURPOSE

The purpose of this study was to construct the phylogeny of the *Vitis-Ampelocissus* clade of the Vitaceae using both plastid and nuclear markers. The resulting phylogeny will then be used to:

- Compare phylogenetic relationships with those determined from prior studies.
- Estimate divergence times of major clades within the *Vitis-Ampelocissus* clade.

MATERIALS AND METHODS

Sampling, DNA Isolation, and Sequencing

- Study sampled 68 accessions representing 58 Vitaceae species and 5 Leeaceae species. 43 of the taxa represent the *Vitis-Ampelocissus* clade.
- Total genomic DNA were extracted from silica-dried material or herbarium material using the DNeasy Plant Minikit protocol.
- DNA was amplified by polymerase chain reaction (PCR) and sequenced via Sanger-method sequencing for four non-coding chloroplast loci (*trnH-psbA, trnC-petN, rps16, and atpB-rbcL*) and two low-copy nuclear loci (*adh1, rpb2*).
- DNA sequences were assembled in the program Geneious version 5.4.5.

Phylogeny Reconstruction and Analysis

- Sequence alignment was first performed using the program MAFFT version 6.857 and then manually adjusted in the program Se-Al version 2.0.
- Sequences generated were concatenated into a family-level matrix for the four plastid markers and a matrix for Vitis alone with the two nuclear markers. Indels were excluded from subsequent analyses.
- Phylogenetic trees were reconstructed using maximum likelihood (ML) and Bayesian inference (BI) methods.
- Family and clade divergence times were based off the four plastid sequences and were estimated using the program BEAST, based on a partitioned analysis of the plastid four-marker data set. A “relaxed clock” model was used to enable substitution rates associated with each branch to be modeled independently.
- Fossil calibrations were set to 85 ± 4 MA million years ago (MA) for the root Vitaceae and 58.5 MA as a minimum age constraint (using a lognormal distribution, offset 58.5 MA) for the stem lineage of the *Vitis-Ampelocissus* clade (Nie et al., 2010).

RESULTS

- Figure 1: *Vitis* taxa, as photographed by Dr. Jun Wen, found in the field. Down each column from left to right: *Vitis cingeraea, Vitis amurensis, Ampelopsis arbores*, *Parthenocissus heptaphylla, Ampelopsis glandulosa, Vitis exilis*, *Vitis rotundifolia, Vitis riparia, Vitis flexuosa, Vitis arizonica, Vitis chungamenensis, Vitis mustangensis* (x2).
- Figure 2: Chronogram inferred from a BEAST analysis of the *Vitis-Ampelocissus* clade and other Vitaceae using a mullipale (*trnH-psbA, trnC-petN, rps16, and atpB-rbcL*) plastid data matrix. Blue bars represent 95% highest posterior density credibility interval for node ages. Chronogram was calibrated at the *Vitis-Leaceae-Mesophyta* split and at a fossil constraint on the stem of the *Vitis-Ampelocissus* clade.

DISCUSSION AND FUTURE DIRECTIONS

- Very strong support for Leeaceae as sister group to the Vitaceae and for a clade consisting of Tetrastigma, Cayratia, and Cyphostemma. (See Fig. 3a)
- Moderate support for the *Vitis-Ampelocissus* clade containing *Vitis*, *Ampelocissus*, and *Periphranthes*.
- *Nothocissus* does not resolve within the *Vitis-Ampelocissus* clade as suggested by other studies. (See Fig. 3a)
- *Ampelocissus* is resolved as a paraphyletic group, as in other studies (Ren et al., 2011). 
- BEAST results indicate early diversification of the *Vitis-Ampelocissus* clade at 12-44 MA, from Mid-Miocene to Eocene. (See Fig. 2)
- This suggests initial radiation of the *Vitis-Ampelocissus* clade occurred during warmer climates and that the group was probably an element of the boreotropical flora of the Eocene (34-56 MA), as suggested by fossil seed discoveries of the group.
- Subsequent major radiations may have occurred during warm paleo-climates of the Miocene (5.23 MA) according to our results.
- Further development of the nuclear *adh1* and *rbp2* markers.
- Incorporation of additional non-coding plastid loci in order to help resolve interspecific relationships within *Vitis*.

ACKNOWLEDGEMENTS

- I thank E. Zimmer, G. Johnson and J. Hone for their assistance in laboratory work and data analysis. M. Chandler for lab and field support.
- This research was supported by the National Science Foundation (DEB-1239715) and the Smithsonian National Museum of Natural History’s NHRE program.

REFERENCE