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▪ Oysters (used as a food source for over 

125,000 years) are farmed today in the 

Chesapeake Bay and valued at 

$30M/year.

▪ Instances of noticeably weaker oyster 

shells were observed during a year of low 

salinity.

▪ Oyster shells are formed from calcite 

crystals in foliated, prismatic, and other 

microstructure morphologies on the 

micron scale.

▪ We took a mineralogical approach to 

investigate how salinity affects oyster 

shells on the atomic scale and micron 

scale.

▪ Raman spectroscopy is a powerful, 

nondestructive method that uses inelastic 

scattering laser light to probe chemical 

bonding environments in crystals. 

Measurement

Raman spectra show differences between prismatic and foliated layers

SEM shows various microstructure morphologies

Maps of Raman ν1  peak heights show heterogeneity
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EDS shows different elemental abundances between 

prismatic and foliated layers

▪ Two groups of juvenile “spat” of Crassostrea virginica, the Eastern 

Oyster, were incubated in low (5–15 psu) and high (15–25 psu) salinity 

treatments at the Smithsonian Environmental Research Center.

▪ Raman spectroscopy was used to measure chemical bonding 

environments across microstructures and salinity treatments.

▪ We targeted the ν1 Raman vibrational mode and its full width half 

maximum (FWHM) to estimate disorder in the crystal structures.

▪ Scanning electron microscopy (SEM) and energy dispersive x-ray 

spectroscopy (EDS) were used to image microstructures and measure 

elemental abundances in the shells.
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Figure 5: Raman spectra of typical calcite crystal; calcite’s vibrational modes and full width 

half maximum (FWHM)

Figure 3: Polished thick section 

Figure 6: Representative Raman spectra of oyster calcite for each treatment 

and microstructure combination. H=high salinity; L=low salinity
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Figure 1: Map of Chesapeake Bay 

mean surface salinity ranges 1985–

2018

Figure 2: Hand samples

Figure 4: Sketch of 

microstructures

Figure 8: Foliated layer in hand sample (left); 

Prismatic layer in hand sample (right)

Figure 10: Raman maps of the boundary between 

the foliated and prismatic layers

Figure 9: Examining the boundary 

between the foliated and prismatic 

layers in thick section
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Figure 13: Sodium abundance is higher in 

the foliated shell at high salinity. n=6 per 

treatment and microstructure combination

Figure 14: Magnesium abundance depends 

on microstructure type, not salinity. n=6 per 

treatment and microstructure combination

Figure 15: EDS spectrum of the low salinity 

prismatic layer 

Figure 16: EDS spectrum of the high salinity 

foliated layer

Figure 11: Secondary electron image of the 

boundary between the foliated and prismatic 

layers of a low salinity sample; measurements 

indicated by numbered dots
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Figure 12: Examining the boundary 

between the foliated and prismatic 

layers in thick sectionFoliated

Prismatic 
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▪ Multispectral analysis of the ν1  mode showed no difference between low and 

high salinity groups, but instead a difference between foliated and prismatic 

microstructures.

▪ Optical microscopy and SEM showed how the microstructures differed in 

physical appearance, due to the calcite being in different orientations.

▪ EDS showed a difference in the foliated layer between low and high salinity 

groups for sodium concentration, but magnesium concentration was related to 

the type of microstructure.

▪ Results from this study show that the ions within the calcite vibrate in relation to 

each other differently depending on the layer where they exist.

▪ Possible future works include Raman maps to analyze heterogeneity in crystal 

orientation using Raman T:L mode ratios for low and high salinity groups.

Figure 7: FWHM depends on microstructure type, not 

salinity. n=6 per treatment and microstructure combination
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